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Expression profiling and bioinformatic
analyses suggest new target genes and
pathways for human hair follicle related
microRNAs
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Abstract

Background: Human hair follicle (HF) cycling is characterised by the tight orchestration and regulation of signalling
cascades. Research shows that micro(mi)RNAs are potent regulators of these pathways. However, knowledge of the
expression of miRNAs and their target genes and pathways in the human HF is limited. The objective of this study
was to improve understanding of the role of miRNAs and their regulatory interactions in the human HF.

Methods: Expression levels of ten candidate miRNAs with reported functions in hair biology were assessed in HFs
from 25 healthy male donors. MiRNA expression levels were correlated with mRNA-expression levels from the same
samples. Identified target genes were tested for enrichment in biological pathways and accumulation in protein-protein
interaction (PPI) networks.

Results: Expression in the human HF was confirmed for seven of the ten candidate miRNAs, and numerous
target genes for miR-24, miR-31, and miR-106a were identified. While the latter include several genes with
known functions in hair biology (e.g., ITGB1, SOX9), the majority have not been previously implicated (e.g., PHF1). Target
genes were enriched in pathways of interest to hair biology, such as integrin and GnRH signalling, and the respective
gene products showed accumulation in PPIs.

Conclusions: Further investigation of miRNA expression in the human HF, and the identification of novel miRNA target
genes and pathways via the systematic integration of miRNA and mRNA expression data, may facilitate the delineation
of tissue-specific regulatory interactions, and improve our understanding of both normal hair growth and the
pathobiology of hair loss disorders.
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Background
The human hair follicle (HF) passes through cycles of
active growth (anagen); regression (catagen); and rest
(telogen). Each of these stages is tightly regulated, and is
characterised by distinct changes in gene expression, cell
proliferation, and differentiation [1, 2].

Micro(mi)RNAs are short (~20-25 nucleotides), non-
coding RNAs, which influence gene expression by bind-
ing to target messenger(m)RNAs via a complementary
seed region, which elicits mRNA degradation or tran-
scriptional inhibition. In recent years, accumulating re-
search data have indicated the importance of miRNAs as
potent regulators of numerous developmental and
pathobiological processes [3]. Several miRNAs have been
implicated in hair biology, e.g., in the control of hair pig-
mentation, HF cycling, and keratinocyte differentiation
[4–6]. For instance, miR-137 is reported to be respon-
sible for coat colour determination in mice [5], while the
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inhibition of miR-31 in murine skin has been shown to
result in accelerated anagen progression and abnormal
hair shaft morphology [4]. A further study reported, a
differential expression for four miRNAs (miR-106a, miR-
410, miR-221, miR-125b) in dermal papilla cells (DPCs)
from the balding and non-balding scalp areas of eight
patients with male pattern baldness (MPB) [7]. However,
the majority of available data on the role of miRNAs in
hair biology have been obtained from mouse or cell cul-
ture experiments, and knowledge of the genes and path-
ways that are targeted by these miRNAs in the human
HF is limited. Such knowledge is essential in terms of
understanding the relevance of miRNAs to human
hair (patho-) biology.
The aims of the present study were to: 1) perform a

systematic investigation of the expression of ten candi-
date miRNAs (miR-22, miR-24, miR-31, miR-106a, miR-
125b, miR-137, miR-205, miR-214, miR-221, miR-410) in
human HF samples; 2) correlate these data with corre-
sponding HF mRNA expression levels; and 3) test the
identified target genes for enrichment in pathways and
protein networks in order to delineate regulatory inter-
actions in the human HF.

Methods
Sample collection and nucleic acid extraction
HF samples were collected from the frontal- and the oc-
cipital scalp areas of 25 volunteer healthy male donors
of European descent (mean age 24.2 years ± 1.6). RNA
and miRNA were extracted from HF tissue using the
miRNeasy Mini Kit and the RNeasy® MinElute® Cleanup
Kit (Qiagen, Hilden, Germany). The quantity and quality
of the extracted RNAs and miRNAs were tested on an
ND-1000 spectrophotometer (Peqlab Biotechnologie,
Erlangen, Germany) and a BioAnalyzer 2100 (Agilent
Technologies, Waldbronn, Germany), respectively. Sam-
ples with an RNA concentration of ≥20 ng/μl, an RNA in-
tegrity number (RIN) of ≥8 and a miRNA concentration
of ≥25 ng/μl were included in the microarray analysis.

miRNA profiling
MiRNA profiling of n = 50 samples (25 frontal, 25 oc-
cipital) was performed on the Affymetrix® GeneChip®

miRNA 4.0 (Affymetrix, Santa Clara, CA) using a total
of 250 ng of HF miRNA. Poly(A) tailing and biotinyl-
ation were performed with the Affymetrix® GeneChip®

Hybridization, Wash, and Stain Kit, in accordance with
the manufacturer’s instructions. After scanning, miRNA
raw expression values were background subtracted,
quantile normalised and log2-transformed using robust
multi-array analysis (RMA) and detection above back-
ground (DABG) in the Affymetrix® Expression Console™
(Affymetrix Santa Clara, CA). A total of 48 samples
from 24 individuals fulfilled all quality control criteria.

Candidate miRNAs were considered to be expressed if
they were defined as ‘present’ in ≥80% of all samples.

mRNA profiling
Whole transcriptome profiling of the corresponding HF
RNA samples was performed using the TotalPrep™-96
RNA Amplification Kit and Illumina HT-12v4 Bead
Arrays (Illumina Inc., San Diego, CA). Background sub-
tracted expression intensities and detection P-values
were exported from the Illumina GenomeStudio soft-
ware. These were then quantile normalised and log2-
transformed using the R package ‘limma’. Only probes
with all of the following four characteristics were taken
into account: (i) a detection P-value of <0.05 (indicating
significant expression above background) in at least 80%
of the samples; (ii) a good or perfect probe quality; (iii)
an annotated Entrez gene identifier, as reported in the
Bioconductor package illuminaHumanv4.db [8]; and (iv)
no single nucleotide polymorphism within the probe se-
quence (dbSNP Build 142). After filtering, a total of
10,029 expression probes, corresponding to 8,210 gene
symbols, remained for the correlation analysis.

Selection of candidate miRNAs
Candidate miRNAs were selected based on the results of
a comprehensive PubMed literature search for the role
of miRNAs in HF biology. A total of ten candidate miR-
NAs (miR-22, miR-24, miR-31, miR-106a, miR-125b,
miR-137, miR-205, miR-214, miR-221, and miR-410)
were selected for investigation in the human HF
(PMIDs: 26020521, 20522784, 21362569, 21967250,
22847819, 23974039, 24232098, and 25422376). These
miRNAs were represented by 21 expression probes on
the Affymetrix miRNA4.0 array (Table 1).

Target gene identification
To identify targets genes, mean miRNA and mRNA ex-
pression levels were calculated from the frontal and oc-
cipital sample of each of the final 24 participants. The
expression levels of 10,029 mRNA probes and seven
expressed candidate miRNAs which were represented by
14 mature miRNA forms were correlated using the Pear-
son correlation analysis method [9]. The respective cor-
relation coefficients (r) were computed and the resulting
P-values were then corrected for multiple testing using
Benjamini-Hochberg correction (Padj). All mRNAs with
a significant correlation (Padj <0.01) to a candidate
miRNA were assumed to be target genes. To exclude
correlations driven by differential expression between
frontal and occipital samples, the correlation trend was
confirmed via single-tissue analysis (Additional file 1:
Table S1, Additional file 2: Figure S1).
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Pathway enrichment of, and protein-protein interactions
(PPIs) between, miRNA target genes
For all significantly correlated target genes, testing for
pathway enrichment was performed using the Ingenuity
Pathway Analysis software (IPA, Qiagen, Hilden,
Germany, accessed 31 March 2016); and the Protein
ANalysis THrough Evolutionary Relationship database
(PANTHER, version 11.1, http://pantherdb.org/, accessed
2nd December 2016) [10]. Only pathways with ≥3 anno-
tated genes and a P-value based on right tailed Fisher’s
exact test <0.05 (IPA) were taken into account.
PPIs were investigated using the Search Tool for the Re-

trieval of Interacting Genes/Proteins (STRING, version 10,
http://string-db.org, accessed 2nd December 2016) [11].

miRNA target prediction
The miRWalk2.0 (http://zmf.umm.uni-heidelberg.de/
apps/zmf/mirwalk2, accessed 11 March 2016) [12]; and
the TargetScan7.0 (http://targetscan.org, accessed 2nd
December 2016) [13] algorithms were used to search for

predicted and validated target genes of the expressed
candidate miRNAs. Only genes that were predicted by
the miRWalk algorithm and three additional imple-
mented databases, or that were predicted to target a
conserved site in TargetScan, were taken into account.

Results
Seven of the ten candidate miRNAs were expressed in
both the frontal an occipital HF samples. The strongest
mean log2 expression (log2_value) was found for miR-205
(log2_value = 3.73 ± 0.01), and miR-24 (log2_value = 3.69 ±
0.03). Using the present criteria, no expression was ob-
served for miR-137 (log2_value = -1.77 ± 1.72); miR-214
(log2_value = 1.50 ± 0.56); or miR-410 (log2_value = -1.08
± 0.61) (data not shown).
To investigate the function of these seven miRNAs,

and to identify their target genes in the human HF, a
correlation analysis of intrasample mean miRNA and
mean mRNA expression was performed. Significant cor-
relation between miRNA and mRNA expression was

Table 1 Overview of selected candidate miRNAs: Previously reported role(s) in hair biology and expression status of the analysed
miRNAs in the human hair follicle (HF)

Candidate miRNA Reported role in hair biology Reference Mature form on
miRNA array

HF
Expression

# of uniquely
correlated genes

miR-31 Inhibits anagen development by
regulating gene expression programmes
and alters hair shaft formation in mice

Mardaryev AN et al., 2010 hsa-miR-31-5p ✓ 99

hsa-miR-31-3p ✓ -

miR-24 Overexpression is associated with
reduced proliferation and premature
HF-keratinocyte differentiation in mice

Amelio I et al., 2013 hsa-miR-24-3p ✓ 103

hsa-miR-24-1-5p ✓ -

hsa-miR-24-2-5p ✓ 5

miR-106a Upregulated in balding human DPC in
comparison to nonbalding DPCs

Goodarzi HR et al., 2012 hsa-miR-106a-5p ✓ 53

hsa-miR-106a-3p ✗ -

miR-22 Overexpression in mice is associated with
hair loss due to anagen-to-catagen transition
and knockout in mice is associated with
delayed catagen entry and accelerated
telogen-to-anagen transition

Yuan S et al., 2015 hsa-miR-22-5p ✓ -

hsa-miR-22-3p ✓

miR-125b Represses HF stem cell differentiation in mice;
significantly upregulated in balding human
DPCs in comparison to nonbalding DPCs

Zhang L et al., 2011;
Goodarzi HR et al., 2012

hsa-miR-125b-5p ✓ –

hsa-miR-125b-1-3p ✗

hsa-miR-125b-2-3p ✓

miR-137 Involved in murine HF pigmentation
(melanogenesis)

Dong C et al., 2012 hsa-miR-137 ✗ –

miR-205 Essential for development of HF stem cell
proliferation during murine embryonic skin
development

Wang D et al., 2013 hsa-miR-205-5p ✓ –

hsa-miR-205-3p ✓

miR-214 Controls Wnt pathway and β-catenin
expression in murine embryonic HF
development

Ahmed MI et al., 2014 hsa-miR-214-5p ✗ –

hsa-miR-214-3p ✗

miR-221 Upregulated in balding human DPCs in
comparison to nonbalding DPCs

Goodarzi HR et al., 2012 hsa-miR-221-5p ✓ –

hsa-miR-221-3p ✓ 1

miR-410 Upregulated in balding human DPC in
comparison to nonbalding DPCs

Goodarzi HR et al., 2012 hsa-miR-410-5p ✗ –

hsa-miR-410-3p ✗

HF hair follicle, DPCs dermal papilla cells, # number
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observed for miR-24, miR-31, miR-106a, and miR-221.
For miR-24 (i.e., miR-24-3p, miR-24-2-5p), a signifi-
cant correlation was found with 106 genes: n = 74,
negatively correlated (neg. cor.); and n = 32, positively
correlated (pos. cor.). The two most significantly cor-
related genes were COL5A2 (Collagen, Type V, Alpha
2; r = -0.92, Padj = 1.70 × 10-5); and SERPING1 (Serpin
Family G Member 1; r = -0.86, Padj = 8.77 × 10-4). For
miR-31, a total of 99 genes (53 neg. cor. and 46 pos.
cor.) were identified. Here, the two most significantly
correlated genes were FAM178A (SMC5-SMC6 com-
plex localisation factor 2; r = -0.90, Padj = 1.51 × 10-4);
and PLAA (Phospholipase A2-Activating Protein; r =
0.89, Padj = 1.82 × 10-4). MiR-106a expression was cor-
related with a total of 53 genes (29 neg. cor. and 24
pos. cor.). Here, the two most significantly correlated
genes were UST (Uronyl-2-Sulfotransferase; r = -0.86,
Padj = 8.77 × 10-4); and COL5A2 (r = -0.85, Padj = 8.77 × 10-4)
(Additional file 1: Table S1). For miR-221, correlation was
found with a single gene - RPRD2 (Regulation Of Nu-
clear Pre-MRNA Domain Containing 2; r = -077. Padj =
7.59 × 10-3). A total of 40 genes were targets of more
than one miRNA. The largest overlap was found be-
tween target genes of miR-31 and miR-106a (n = 29).
Ten genes (FZD7, JUN, MEIS2, TAX1BP3, RBM17,
SFRP1, TP63, ZCCHC11, COL17A1, SMARCA4) were
significantly correlated with miR-24, miR-31, and miR-
106a (Fig. 1, Additional file 1: Table S1).

In the investigation of a potential enrichment of
miRNA target genes in biological pathways, IPA revealed
the strongest enrichment of the respective target genes
in ‘Hepatic Fibrosis/Hepatic Stellate Cell Activation’
(miR-24), and ‘JAK/STAT Signalling’ (miR-31 and miR-
106a). In the PANTHER analysis, ‘Integrin Signalling’
was the top pathway for the target genes of miR-24,
miR-31 and miR-106a. An overview of all identified
pathways is provided in Additional file 1: Table S2.
In the miRWalk2.0 [12] and TargetScan7.0 [13] analyses,

40%, 62%, and 42% respectively of the identified target
genes for miR-24, miR-31 and miR-106a were not predicted
by either tool. The single target gene of miR-221 was pre-
dicted by miRWalk only (Additional file 1: Table S3).
The STRING [11] database query revealed numerous

interactions between the miRNA-specific-, shared- and
all target genes of all four miRNAs. In all PPI-networks,
an interaction was observed between JUN and FZD7 via
SFRP1 (Fig. 2, Additional file 2: Figure S2).

Discussion
The present study involved comprehensive analysis in
the human HF of ten miRNAs previously implicated in
hair biology [7, 14]. Expression profiling confirmed the
expression of seven of the ten candidate miRNAs, sug-
gesting that these miRNAs may indeed play a role in hu-
man hair biology. For miR-24, miR-31, and miR-106a
several target genes and pathways of interest were iden-
tified (Table 1).
The highest number of target genes was identified for

miR-24. Previous research has identified miR-24 as an
anti-proliferative miRNA, which promotes keratinocyte
differentiation via the modulation of actin filaments [15],
and plays a role in hair morphogenesis [6]. For miR-24
(i.e., miR-24-3p, miR-24-2-5p), correlation analysis re-
vealed a total of 106 unique target genes. These include
the miRWalk2.0 predicted target ITGB1, which encodes
the integrin β-1 subunit and has been subject to exten-
sive investigation with respect to skin and hair homeo-
stasis (reviewed in Rippa et al., 2013 [16]). The present
pathway analysis also revealed an enrichment of miR-24
target genes in ‘Integrin Signalling’. These results suggest
that integrin signalling is an essential pathway for kera-
tinocyte differentiation in the human HF, and that this is
controlled by miR-24. Furthermore, significant correla-
tions with miR-24 expression were observed for six col-
lagen genes. In descending order of significance, these
were: COL5A2, COL17A1, COL4A6, COL4A5, COL18A1
and COL4A1. The respective gene products also form a
dense PPI-network (Fig. 2). Previous functional studies
have demonstrated hair coat thinning and abnormal HF
morphogenesis in mice that overexpress miR-24 in basal
keratinocytes. These mice display shorter, misangled,
and wavy HFs [6]. A similar hair phenotype is seen in

Fig. 1 Overview of all target genes with a significant correlation to
miR-24, miR-31, and miR-106a. The largest overlap in target genes
was detected for miR-31 and miR-106a (n = 29). MiR-31, miR-24
(i.e., miR-24-3p, miR-24-2-5p), and miR-106a shared the following
ten target genes: FZD7, JUN, MEIS2, TAX1BP3, RBM17, SFRP1, TP63,
SMARCA4, COL17A1, and ZCCHC11. The same ten target genes
were shared between miR-31 and miR-24. MiR-24 and miR-106a
shared a total of 21 target genes. No overlap was found for
miR-221 and the three remaining miRNAs
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patients with the chromosome 2q32 deletion syndrome,
whose clinical features include thin, sparse, woolly, and
slowly growing scalp hair [17, 18]. Interestingly, the af-
fected 2q32 chromosomal region includes COL5A2.
Another collagen gene, Col17a1, is reported to be
essential for HF stem cell maintenance [19] and age-
associated HF miniaturisation and thinning, as medi-
ated by COL17A1 proteolysis [20]. Moreover, COL17A1
deficiency is associated with junctional epidermolysis
bullosa, a severe skin disease characterised by hair loss
[21]. Taken together, these data suggest that miR-24 is
an important regulator of hair morphogenesis and
maintenance, which achieves its effect via the control
of integrin and collagen signalling. The present study
also detected an enrichment of miR-24 target genes in
the hormone signalling cascades ‘Gonadotropin Re-
leasing Hormone (GnRH) Receptor Pathway’, and ‘An-
drogen Signalling’. Whereas androgen signalling is
essential for hair biology and has been shown to
regulate hair growth and cycling at different body
sites [22], GnRH signalling antagonises androgen re-
ceptor signalling at androgen-sensitive body sites in
women, and GnRH antagonists are an effective treat-
ment for hirsutism [23, 24]. Research is warranted to
determine whether these hormone pathways also play
a role in keratinocyte differentiation.
Research has shown that miR-31 is responsible for both

anagen inhibition and normal hair shaft formation [4].
The present analyses identified a total of 99 target genes
that may act downstream of miR-31 in these processes.
These include Retinoid X Receptor Alpha (RXRA), a nu-
clear receptor which is highly expressed in skin and in HF
outer root sheath (ORS) keratinocytes [25, 26]. In mice,
ablation of Rxra in the skin leads to HF degeneration and
subsequent hair loss [27], while conditional knockout in
epidermal and ORS keratinocytes results in altered anagen
initiation [28]. These findings underline the role of RXRA
in HF maintenance and hair cycle control. Interestingly,
target genes of miR-31 were enriched in PPAR and RAR/
RXRA signalling, thus supporting the hypothesis that
RXRA-mediated signalling is important for the control of
anagen initiation. Moreover, miR-31 target genes were
enriched in PDGF (Platelet-Derived Growth Factor), adi-
pogenesis, and JAK/STAT signalling, which have been im-
plicated previously in the control of the HF cycle [29–33].
Studies in murine HFs have demonstrated that several
PDGF isoforms induce and maintain murine anagen HFs
[31]. Furthermore, PDGF signalling may contribute to the
essential role of immature adipocytes in anagen induction
[34]. A recent study identified JAK/STAT signalling as a
promising therapeutic target for the treatment of hair loss
disorders. Here, topical application of JAK/STAT inhibi-
tors to the shaved back skin of mice led to rapid anagen
induction [33]. Collectively, the identified target genes and

pathways indicate that miR-31 is a potent cross-species in-
hibitor of the anagen phase. However, functional studies
are required to confirm the interaction between miR-31
and these pathways, and to elucidate their role in anagen
control in the human HF.
The third miRNA to show significant mRNA correla-

tions in the present analyses, miR-106a, is reported to be
upregulated in the balding, as compared to the non-
balding, DPCs of males with MPB, which suggests that it
may be implicated in MPB pathobiology [7]. Although
none of the 53 identified target genes of miR-106a have
yet been associated with MPB, two building blocks of
the desmosome - Plakophilin 3 (PKP3) and Desmocollin
1 (DSC1), are reported to play a role in HF morphogen-
esis [35]. Pkp3 deficient mice develop an abnormal hair
coat and secondary alopecia [36]. Although Dsc1 defi-
cient mice show normal HF cycling and structures until
the age of four weeks, they develop alopecia and HF de-
generation in later life [37]. Moreover, one of the path-
ways identified in the present study was ‘WNT
Signalling’, which is of key importance in terms of HF
development and cycling [38–41]. Interestingly, genetic
evidence is available for the involvement of WNT signal-
ling in MPB development. Heilmann et al. reported that
a single nucleotide polymorphism (rs7349332) located
intronically in WNT10A was associated with MPB risk
(P ≤ 5 × 10-8) and resulted in reduced WNT10A expres-
sion in HFs of risk allele carriers [42]. The present ana-
lyses therefore provide strong support for the hypothesis
that miR-106a contributes to MPB development via
WNT signalling and that the regulation of cell-cell adhe-
sion may be an important factor in MPB.
Intriguingly, ten of the identified target genes were

shared between miR-31, miR-24, and miR-106a, suggest-
ing that they may be critical points in the signalling cas-
cades that control HF biology. The overlapping target
genes FZD7, SFRP1, and TAX1BP3 are involved in WNT/
β-catenin signalling, which is an important biological
pathway for HF development and maintenance [43–46].
The WNT receptor FZD7 mediates canonical and non-
canonical signalling [47, 48], while SFRP1 and TAX1BP3
are reported as WNT antagonists. The respective proteins
exert their effects via direct interaction with WNT or FZD
proteins [49] and binding to β-catenin [50], respectively.
Another interesting shared target gene is TP63, since one
characteristic of p63 knockout mice is the absence of HFs
[51]. SMARCA4 is a component of the chromatin remod-
elling complex, and knock-out experiments in murine
bulge cells showed that it is required for hair regeneration
and anagen progression [52]. The role of COL17A1 in hair
biology was discussed earlier. The four remaining overlap-
ping target genes have not yet been associated with
HF biology. The gene RBM17 is reported to be involved
in mRNA splicing [53], JUN belongs to the AP-1
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transcription factor family, and is involved in many funda-
mental cell processes including proliferation, differenti-
ation, and apoptosis and plays an essential role in skin
development and the differentiation of epidermal kerati-
nocytes [54–59]. MEIS2 encodes a TALE homeobox pro-
tein, which is a highly conserved transcription factor, and
ZCCHC11 is a zinc finger containing RNA uridyltransfer-
ase. Taken together, these results underline the import-
ance of WNT signalling in hair biology and suggest that
miRNAs are critical regulators of WNT and TP63 signal-
ling in the human HF.
In addition to these ten shared genes, a total of 30

genes were targeted by two miRNAs. These therefore
represent further promising candidate genes, which may
impact key functions in healthy hair biology and the
pathobiology of hair loss disorders.
According to the STRING database, numerous inter-

actions exist between the identified target genes of each
candidate miRNA, and among the 40 shared miRNA tar-
get genes. This indicates that these miRNAs are (in)dir-
ectly involved in various regulatory networks. Notably,
all of these networks contain an indirect interaction be-
tween JUN and FZD7 via SFRP1, suggesting that these
genes may play a pivotal role in the miRNA mediated
control of HF cycling, keratinocyte differentiation and
MPB development (Fig. 2, Additional file 2: Figure S2).
The present analyses failed to confirm the expression

of miR-137, miR-214 and miR-410 in the human HF.
While miR-137 has been described in the determination
of murine coat colour [5], no data are available concern-
ing the expression pattern of miR-137 in the human HF
or skin. Research has shown that miR-214 controls
WNT/β-catenin signalling in murine embryonic HF de-
velopment [60]. Further studies are required to deter-
mine whether miR-137 is involved in the determination
of human hair colour and whether miR-214 plays a role
in human HF embryogenesis. MiR-410 expression was
found almost exclusively in the DPCs of balding vellus
HFs [7]. As the present analyses were restricted to non-
balding HFs with sparse DPCs, the failure to detect miR-
410 expression in the present samples may point to a
very specific role for miR-410 during MPB pathogenesis.
Moreover, no significant correlation was found with
mRNA expression for miR-22, miR-125b, or miR-205.
This may be attributable to limited power of our sample
(n = 24) to detect smaller regulatory effects.

Conclusions
In conclusion, the present systematic investigation of the
expression of ten miRNAs previously implicated in hair
biology and the identification of their target genes, path-
ways, and regulatory networks provides novel insights
into the biological mechanisms that control human
HF cycling, HF keratinocyte differentiation, and MPB

pathogenesis. Further analyses in larger samples and de-
tailed functional follow up investigations, such as the
precise miRNA localisation in the human HF and their
expression profile during different hair cycle stages, are
now warranted to confirm these findings and to identify
additional target genes and regulatory interactions. In-
creased sample sizes will also allow genome-wide inves-
tigations and thus the identification of additional hair-
relevant miRNAs, as well as their target genes and regu-
lated pathways. This research will facilitate understand-
ing of human hair (patho-) biology.

Additional files

Additional file 1: Tables S1-S4. Significantly correlated target genes of
miR-24, miR-31, miR-106a, and miR-221. Table S2. Overview of pathways
identified via IPA and PANTHER. Table S3. Prediction of significantly cor-
related target genes of miR-24, miR-31, miR-106a, and miR-221. Table S4.
Intra-individual mRNA and miRNA correlations. (XLSX 101 kb)

Additional file 2: Figures S1-S2. Figure S1. Single tissue analysis of
miRNA Expression in the human hair follicle. Figure S2. STRING query.
(PDF 258 kb)
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