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Effect of 12-O-tetradecanoylphorbol-13-
acetate-induced psoriasis-like skin lesions
on systemic inflammation and
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Abstract

Background: Risk of cardiovascular disease is increased in patients with psoriasis, but molecular mechanisms
linking the two conditions have not been clearly established. Lack of appropriate animal models has hampered
generation of new knowledge in this area of research and we therefore sought to develop an animal model with
combined atherosclerosis and psoriasis-like skin inflammation.

Methods: Topical 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to the ears twice per week for 8 weeks
in atherosclerosis-prone apolipoprotein E deficient (ApoE−/−) mice.

Results: TPA led to localized skin inflammation with increased epidermal thickness, infiltration of inflammatory-like
cells and augmented tissue interleukin-17F levels. Systemic effects of the topical application of TPA were
demonstrated by increased plasma concentration of serum amyloid A and splenic immune modulation,
respectively. However, atherosclerotic plaque area and composition, and mRNA levels of several inflammatory
genes in the aortic wall were not significantly affected by TPA-induced skin inflammation.

Conclusions: TPA-induced psoriasis-like skin inflammation in atherosclerosis-prone ApoE−/− mice evoked systemic
immune-inflammatory effects, but did not affect atherogenesis. The results may question the role of psoriasis-
induced inflammation in the pathogenesis of atherosclerosis in psoriasis patients.
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Background
Psoriasis is a chronic inflammatory disease of the skin
estimated to affect 2–4 % of adults in the western popu-
lation, but with a varying prevalence due to factors in-
cluding geography and age [1]. Epidemiological studies
have demonstrated that psoriasis is associated with in-
creased risk of cardiovascular disease, e.g., myocardial
infarction, stroke, and cardiovascular death [2–6]. This
association has led to recommendations for screening

and aggressive management of traditional cardiovascular
risk factors in psoriasis patients [7]. Indeed, cardiovascu-
lar risk factors including hyperlipidaemia, obesity, smok-
ing, hypertension, and diabetes are also more frequently
observed in psoriasis patients and the comorbidities are
often underdiagnosed and undertreated [8–10].
The leading cause of cardiovascular death is athero-

sclerosis [11]. Like psoriasis, atherosclerosis is a
chronic inflammatory disease and common immuno-
logical pathways may causally link the two diseases
[10–13]. Thus, psoriasis per se may be an independ-
ent risk factor for cardiovascular disease, but it re-
mains to be proven whether psoriasis-driven systemic
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inflammation accelerates atherosclerosis. The lack of
appropriate models to study potential causal links be-
tween psoriasis and cardiovascular disease has ham-
pered such investigations. Therefore, development of
an animal model with psoriasis-like skin lesions and
atherosclerosis would provide a valuable tool for in-
vestigations of putative shared disease mechanisms
and potential new therapeutic targets aimed at both
diseases. Shared immunological pathways in psoriasis
and atherosclerosis include T helper cell 1 (Th1)-mediated
inflammation, alterations in angiogenesis, and dysfunction
of the endothelium [11]. Moreover, interleukin (IL)-17-
producing cells have been found to have a key role in the
pathogenesis of both psoriasis and atherosclerosis, even
though the exact role of Th17 cells in atherogenesis
remains debated [14].
Presently, only few studies have examined vascular

changes in mice with experimentally induced psoriasis-
like skin lesions and these have exclusively been per-
formed in atherosclerosis-resistant (normocholesterolae-
mic) mice. Hence, the former studies have assessed
vascular parameters other than established athero-
sclerosis, e.g., inflammatory cell infiltration, reactive
oxygen species formation, endothelial dysfunction,
and thrombogenicity [15, 16]. To enable investigations
of potential causal links between psoriasis and athero-
sclerosis, we aimed to develop a mouse model combining
the two diseases. The hypercholesterolaemic apolipopro-
tein E deficient (ApoE−/−) mouse is a well-established
model for atherosclerosis [17, 18]. Thus, ApoE−/− mice
develop extensive atherosclerotic lesions detectable from
approximately 10 weeks of age when on a chow diet [17].
The phorbol ester 12-O-tetradecanoylphorbol-13-acetate
(TPA) is a protein kinase C activator, which after applica-
tion to the skin induces inflammation and epidermal
hyperplasia that recapitulate some of the hallmarks of
psoriasis [19, 20]. To investigate whether TPA-induced
skin inflammation would induce sufficient deregulation of
the systemic immune-inflammatory homeostasis to affect
the extent and composition of atherosclerotic plaques we
therefore examined the latter after repeated applications
of TPA to the ears of ApoE−/− mice. Since atherosclerosis
is a disease that progresses slowly, we applied TPA for
8 weeks, as has been done by others [21]. Topical TPA
applications induced psoriasis-like skin lesions and un-
equivocal signs of increased systemic inflammation but
had no effect on the development of atherosclerosis in this
model.

Methods
Mice and topical application
Female ApoE−/− mice were purchased from Taconic (Ry,
Denmark), model no APO-F (B6.129P2-ApoEtm1Unc

N11). Two separate, but similar, studies were conducted,

i.e., a pilot study with n = 5–7 mice/group (study 1)
followed by a full-scale study with n = 15 mice/group
(study 2). Mice had access to water and standard diet ad
libitum (Altromin 1314, Brogaarden, Gentofte, Denmark)
and were housed with 12 h light/dark cycles in a
temperature- and humidity-controlled room at 21–23 °C
at the University of Copenhagen.
At the age of 11 weeks, mice received 2 topical appli-

cations/week (20 μl/ear) of either vehicle (acetone) or
TPA (Sigma-Aldrich, Brøndby, Denmark; dissolved in
acetone at a 0.1 μg/μl concentration). Applications were
given on both ears and the mice received 16–17 applica-
tions during a total of 8 weeks. Mice were terminated
either 3–4 (study 1) or 2 (study 2) days after the last
TPA application. Ear thickness was measured prior to
each TPA application using a digimatic thickness gauge
(Mitutoyo, Illinois, US). All measurements were per-
formed by the same investigator. At study termination,
mice were anaesthetized subcutaneously with a 0.1 ml/
10 g mouse dose of either a mixture of fentanyl
(0.079 mg/mL), fluanisone (2.5 mg/mL), and midazo-
lam (1.25 mg/mL) (study 1), or a mixture of tileta-
mine (1.63 mg/mL), zolazepam (1.63 mg/mL), xylazin
(2.61 mg/mL), and butorphanol tartrate (0.065 mg/mL)
(study 2). Subsequently, blood was collected and mice
were perfused with ice-cold saline.

Skin histology
Half of an 8 mm biopsy of the right ear was prepared for
histology by fixation for one week at room temperature
in 10 % neutral buffered formalin (“Lillie” formaldehyde
solution 4 %, Hounisen, Skanderborg, Denmark) and
embedded in paraffin. Cross-sections of 4 μm were depar-
affinized and rehydrated prior to staining with Mayer’s
hematoxylin and eosin (Rigshospitalet, Copenhagen,
Denmark), rinsing and dehydration. Digital images were
obtained with a light microscope (Leica Microsystems,
Ballerup, Denmark).

Protein analysis from serum and skin samples
Blood was collected in heparinized microtubes (capiject;
Terumo Medical Coorporation, Elkton, US) prior to the
first TPA/acetone application (baseline sample, sub-
mandibular vein) and again at study termination
(retro-orbital vein). Plasma was collected after centri-
fugation for 10 min at 1000 × g at 4 °C, aliquoted,
and stored at −80 °C until use. Plasma cholesterol
was measured in duplicates using the CHOD-PAP re-
agent from Roche (Roche Diagnostics, Denmark). For
protein analyses of ear lysates, an 8 mm biopsy of the
left ear was snap-frozen in liquid nitrogen. Using a
tissue homogenizer (Precellys 24, Bertin Technologies,
Montigny le Bretonneux, France), the biopsies were
crushed in cell lysis buffer (Cell Signaling Technology,
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The Netherlands) containing freshly added protease
inhibitors (complete protease inhibitor with Halt,
Thermo Scientific, Rockford, US). Tissue lysates were
collected after 15 min of centrifugation at 15,000 × g
and total protein concentration was measured with
the Pierce BCA protein assay kit (Thermo Scientific),
according to the manufacturer’s instructions. Murine
IL-22 and IL-17F (R&D Systems, Minneapolis, US)
and serum amyloid A (SAA) (Tridelta, Kildare, Ireland)
were measured by commercial ELISA according to
the manufacturer’s instructions. Mouse interferon-γ
(IFNγ), tumor necrosis factor- α (TNFα), keratinocyte-
derived cytokine (KC), IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10,
IL-12p70, and total IL-12 were measured with the
ProInflammatory 7-Plex and Th1/Th2 9-Plex MSD
MULTI-spot Assay Systems (Meso Scale Discovery,
Rockville, US) according to the manufacturer’s in-
structions. For each assay, a volume of 1.7–5 μl heparin-
ized plasma or a total protein amount of 12–200 μg of ear
lysate was used.

Aortic arch atherosclerosis (en face) and aortic arch mRNA
The relative amount of atherosclerosis was measured en
face in the aortic arch (from the heart to the 7th rib),
and the same tissue was used for RNA extraction and
quantitative real-time PCR. The aortic arch (from the
heart to the 7th rib) was snap-frozen in liquid nitrogen.
For en face analysis, the aortic arch was opened longitu-
dinally, and images of the luminal surface were acquired
with a digital camera connected to a dissecting micro-
scope and analysed using the Leica IM50 software (Leica
Microsystems). For mRNA analysis, total RNA was
extracted from the aortic arch using TRIzol (Life
Technologies, Naerum, Denmark) and examined on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, US). RNA concentration was measured using a
NanoDrop 1000 Spectrophotometer (Thermo Scientific)
before cDNA synthesis of 250 ng RNA/aorta using the
High Capacity cDNA Reverse Transcription Kit (Life
Technologies). Real-time quantitative PCR was per-
formed on a TaqMan (Life Technologies). Primer and
probe information can be found in Additional file 1.

Aortic root histology
The apex of the heart was cut off and the remaining part
fixed in Lillie’s formalin at 4 °C overnight prior to being
snap-frozen in Tissue-Tek O.C.T. (Sakura Finetek,
Leiden, Netherlands) in ice-cold isopentane. The aortic
root was sectioned on a cryostat (Leica) at −18 to −25 °C.
Ten μm sections were collected on SuperFrost Plus slides
(Menzel-Gläser; Thermo Scientific) for a total of 900 μm
starting from where an aortic valve cusp was first visible.
The atherosclerotic plaque area was measured, where
all three aortic valve cusps were visible to ensure that

quantifications were performed at the same anatom-
ical site in each mouse. Masson’s Trichrome staining
was performed according to the manufacturer’s in-
structions (Sigma-Aldrich), and was used to detect
collagen/fibrosis. Immunohistochemical staining was
performed with monoclonal rat anti-mouse macrophages/
monocytes (MOMA-2 MCA519, 1:500; AbD Serotec,
Kidlington, UK). Corresponding antibody isotype control
was run with monoclonal rat IgG2b (MAB0061, 1:500,
R&D systems). For detection, we used a biotinylated sec-
ondary antibody rabbit anti-rat (E0468, 1:2000; Dako,
Glostrup, Denmark). The staining procedure included
blocking of endogenous peroxidase with 0.5 % H2O2,
blocking of unspecific antibody binding with 2 % BSA,
brown positive staining using a horse-raddish peroxidase
approach (Vectastain Elite ABC kit; VectorLab) followed
by diaminobenzidine (DAB+, Dako), and counterstaining
with Mayer’s hematoxylin (Sigma-Aldrich). Digital photos
of histological sections were acquired using a slide scanner
(Pannoramic, 3DHISTECH, Budapest, Hungary or Axio
Scan.Z1, Zeiss, Birkerød, Denmark), and quantified
using the Visiomorph software (Visiopharm, Hørsholm,
Denmark).

Flow cytometry
Single-cell splenocyte preparations were made by gently
forcing splenic tissue through a 70 μm mesh using a
3-ml syringe plunger and ice-cold Hanks Buffered Salt
Solution (HBSS, Panum, Denmark). Splenocytes were
pelleted at 300×g for 8 min, washed once in HBSS,
and counted using methylene violet and the ‘Countess’
(Invitrogen). Half of the mice were euthanized in one day
and the other half the following day, and each day we
made a pool of splenocytes from control mice and from
TPA mice. These pools were used for setup and for
making ‘fluorescence minus one’ (FMO)-controls. Four
different flow cytometry analyses were carried out (see
Additional files 2 and 3 for more information on anti-
bodies applied together with the corresponding represen-
tative figures for gating strategies). Cell surface staining
was accomplished using standard techniques in 100 μl in
V-bottom 96-well microplates (TPP Techno Plastic
Products, Trasadingen, Switzerland). Briefly, 1–2 × 106

splenocytes were pelleted and blocked with 50 μl FACS
buffer (0.1 % sodium azide and 2 % bovine serum albumin
in phosphate-buffered saline, PBS) containing FcBlock
(1:100; Cat. n° 101302, BioLegend) for 5 min to block Fcγ
receptors on the splenocytes. Without washing, staining
antibodies were added in 50 μl FACS buffer and incubated
for an additional 20 min at 4 °C in the dark. Next, spleno-
cytes were washed, fixed with paraformaldehyde in PBS,
and analysed within 24 h using LSRII flow cytometer
(BD Biosciences, Albertslund, Denmark). For intracel-
lular staining of Foxp3 (regulatory T-cells), we followed
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eBioscience’s protocol for staining of intracellular/nuclear
proteins after cell surface markers (CD4 and CD25) had
been stained using the above protocol. To assess changes
in CD4+ helper T-cell bias due to the TPA application, we
followed the manufacturer’s protocol for the Mouse
Th1/Th2/Th17 Phenotyping Kit (Cat. n° 560758, BD
Biosciences). In order to investigate parallel changes
in CD8+ cytotoxic T-cell bias, an anti-CD8 antibody
was added to splenocytes as described in the manufac-
turer’s protocol. Briefly, for individual mice, two cultures
with 10 × 106 splenocytes were seeded in RP-10 media
(RPMI-1640 media containing 2 mM L-glutamine, 10 %
heat-inactivated fetal bovine serum, 10 mM HEPES
buffer, 0.1 mM non-essential amino acids, 100 U/ml
penicillin, and 100 μg/ml streptomycin) containing
the BD GolgiStop reagent. Splenocytes in one culture
were stimulated with 50 ng/ml TPA and 1 μg/ml
Ionomycin for 4 h at 37 °C, whereas the second culture
was left unstimulated. Splenocytes were harvested,
washed, counted, and 1.2 × 106 splenocytes were fixed
using BD Cytofix buffer, washed, permeabilized using BD
Perm/Wash buffer, and stained using the kit’s antibody
cocktail, followed by staining with the anti-CD8 antibody.
Stimulated and unstimulated cells were then washed in
FACS buffer prior to flow cytometric analysis.

Statistics
Results are shown as mean ± SEM or mean ± SD for nor-
mally distributed data or median [interquartile range
(IQR)] for non-normally distributed data. Differences be-
tween groups were analysed with parametric or non-
parametric t-tests, and multiple t-tests with correction
for multiple comparisons were used when appropriate.
A p-value <0.05 was considered significant. Data were
analysed using the Graphpad Prism version 6.05
(GraphPad Software, California, US).

Results
Long-term application of TPA induces ear swelling and
local inflammation in ApoE−/− mice
To induce psoriasis-like skin inflammation, hypercholes-
terolaemic ApoE−/− mice received twice weekly topical
applications on both ears of either TPA or vehicle
(control), for 8 weeks. TPA led to a skin reaction charac-
terized by scaly skin and redness (Fig. 1a), and by a
marked increase in ear thickness throughout the applica-
tion period (p < 0.001 at all time points after baseline,
TPA vs. control, Fig. 1b). The ear thickness in control
mice was not affected by vehicle application. Histological
examination of hematoxylin and eosin-stained ear cross-
sections revealed that TPA induced epidermal thicken-
ing and local inflammation as assessed by the presence
of inflammatory cells in the dermis (Fig. 1a). To investi-
gate whether the TPA-induced histological features were

accompanied by changes in local levels of inflammatory
mediators, we measured protein levels of selected cyto-
kines in ear lysates. Levels of IL-17F were significantly
higher in ear lysates from TPA-treated mice as com-
pared to those from control mice (16.2 [12.1–24.1]
pg/mg total protein vs. 0 [0.0–0.5] pg/mg total pro-
tein, p = 0.003, Fig. 1c), indicating that topical TPA
application induced a local immune response with in-
filtration of IL-17F producing cells. We found no dif-
ference in protein levels of IL-12 and KC. Protein
levels of the cytokines IL-1β, −2, −4, −5, −6, −10,
−12p70, −22, and IFNγ, and TNFα were below the
ELISA detection limits in all ear lysates.

Topical TPA application elicits systemic inflammatory
modulations
To investigate whether topical application of TPA would
induce not only a local immune response, but also
systemic effects, we measured plasma levels of SAA and
inflammatory cytokines (IL-1β, −2, −4, −5, −6, −10,
and -12p70, and IFNγ, and TNFα), and performed
flow cytometry of spleens from TPA and control
mice. Plasma SAA levels were higher in TPA-treated vs.
control mice (4.1 [3.1–6.7] μg/ml vs. 2.8 [2.7–3.0] μg/ml,
p < 0.0001, Fig. 2a), whereas the other measured cytokines
either were below ELISA detection limits, or showed no
difference between the two groups (data not shown). TPA
application caused larger spleens compared to vehicle ap-
plication (5.4 ± 0.2 vs. 4.6 ± 0.2 mg wet weight/body
weight, p = 0.0039); however, this difference was not
reflected in absolute splenocyte numbers (105 ± 8 × 106 vs.
98 ± 7 × 106 cells, p > 0.05). Flow cytometry analyses re-
vealed a significantly higher amount of CD11b+ cells in
spleens from TPA-treated mice compared to control mice
(12.0 ± 1.2 vs. 7.9 ± 0.7 × 106 cells, p = 0.009, Fig. 2b). In
mouse spleen, CD11b is expressed primarily by inflamma-
tory monocytes, macrophages, neutrophils, and some sub-
populations of dendritic cells [22]. Additional flow
cytometry analyses of the spleens did not reveal differ-
ences in cytotoxic (CD8+) or helper (CD4+) T-cell popula-
tions (data not shown). However, detailed analyses of
activated CD4+ and CD8+ T-cell populations, based on ex-
pression pattern of CD62L and CD44, revealed signifi-
cantly expanded effector (CD44+CD62L−) and memory
(CD44+CD62L+) CD4+ T-cell populations in the TPA
mice compared to control mice (Fig. 2c). In addition, the
memory (CD44+CD62L+) CD8+ T-cell population was
also expanded in the TPA mice (Fig. 2d). There were cor-
responding reductions of naïve CD4+ and CD8+ T-cell
populations (data not shown). Using TPA/ionomycin-
stimulation of splenocytes, we detected similar expression
of intracellular IFN-γ, IL-4, and IL-17 (Th1, Th2, and
Th17 signature cytokines, respectively) in CD4+ cells from
TPA and control mice (data not shown). However, in the
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CD8+ cells, we found a significantly higher percentage of
IFN-γ expression (Tc1-cells) in TPA mice (Fig. 2e). There
was a corresponding reduction of uncommitted CD8+

cells, but no differences in IL-4 and IL-17 expression in
the CD8+ cells (data not shown). In a separate ana-
lysis, we found significantly elevated percentages of
splenic CD4+Foxp3+CD25− regulatory T-cells (Tregs)
in TPA mice compared to control mice (Fig. 2f). There
were no differences in natural CD4+Foxp3+CD25+ Tregs
or activated CD4+CD25+Foxp3− T-cells (data not shown).

Topical application of TPA does not accelerate
atherosclerosis in ApoE−/− mice
Atherosclerotic plaque area in the aortic root as well as
in the aorta en face was similar in TPA-treated and con-
trol mice (Figs. 3a and b). Also, we found no differences
in plasma cholesterol levels (Additional file 4) or in the

composition of the plaques in the aortic root, as assessed
by histological staining for macrophages and collagen
(Fig. 3c). To investigate whether more subtle inflamma-
tory changes had occurred in the arterial wall, we mea-
sured aortic arch mRNA expression of several genes
involved in atherogenesis, i.e., macrophage markers
(F4/80, murine monocyte chemoattractant protein-1
[MCP-1]), adhesion molecules (intercellular adhesion
molecule 1 [ICAM-1], vascular cell adhesion molecule
1 [VCAM-1]), and inducible nitric oxide synthase
[iNOS]). None of these genes were differentially
expressed between TPA and control mice (Fig. 3d).

Discussion
In the present study, we demonstrated that long-term top-
ical TPA application in hypercholesterolaemic ApoE−/−

mice induced skin inflammation with psoriasis-like
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features, i.e., epidermal thickening and increased local IL-
17F levels in the skin, presumably reflecting skin infiltra-
tion of IL-17F-producing immune cells. TPA application
also led to systemic effects, as identified by higher plasma
levels of SAA and splenic weight, and altered splenic cel-
lular populations. These systemic immunomodulatory ef-
fects of TPA-induced dermatitis, however, did not affect
the area and composition of atherosclerotic plaques, and

had no effect on aortic expression of a range of inflamma-
tory genes.
Despite strong epidemiological associations, it is un-

clear which mechanisms mediate the increased risk of
cardiovascular disease in patients with psoriasis. In
patients with psoriasis, clinical data from treatment
studies with antibodies against TNFα and IL-17, suggest
that Th1 and Th17 cells play a significant role in
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development and progression of psoriasis [23]. More-
over, IL-17A, IL-17C, and IL-17F protein levels are in-
creased in psoriatic lesions in humans as well as in some
mouse models of psoriasis, e.g., after TPA application in
transgenic mice with skin-specific expression of vascular
endothelial growth factor, and in the imiquimod (a toll-
like receptor 7 and 8 ligand and potent immune

stimulator) model [24, 25]. KC, the proposed murine
functional analogue of human IL-8, is a pro-
inflammatory chemokine that has also been shown to
play a role in human psoriasis pathogenesis [26]. In our
study, we found higher levels of IL-17F, and similar
levels of KC in TPA mice compared to vehicle-treated
mice. Thus, our data indicate that in ApoE−/− mice, the
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Plaque areas measured in control and TPA mice in: a cross sections of the aortic root (μm2), and b the aortic arch en face (% of the aortic arch
area); data represent mean values, parametric t-test. In a, the number of sections quantified were n = 4–7/mouse in study 1, and n = 1–4/mouse
in study 2. c Quantification of the level of macrophages and monocytes (MOMA-2, brown) and collagen content (Trichrome, blue) in aortic root
plaque (depicted as % of the total plaque area in the aortic root, mean values, parametric t-tests). Data from study 1 (n = 5–7/group) are shown
as follows: control: unfilled circle; TPA: filled circle, and from study 2 (n = 10–15/group) as control: unfilled triangle; TPA: filled triangle. Also shown
representative photos of the two aortic root stainings, with scale bar = 200 μm. d mRNA levels of the macrophage marker F4/80, vascular adhesion
molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), inducible nitric oxide synthase (iNOS), and monocyte chemoattractant protein 1
(MCP-1) in the aortic arch as measured by real-time quantitative PCR. The expression levels were normalized to the housekeeping gene
glycealdehyde-3-phosphate-dehydrogenase (GAPDH). Subsequently, fold expression in TPA mice relative to control mice was calculated
and depicted (control mice set to 1 and depicted as a dotted line). Ten mice/group from study 2 were randomly selected for this analysis. Results are
shown as median (IQR), and statistical differences were analysed with non-parametric t-test

Madsen et al. BMC Dermatology  (2016) 16:9 Page 7 of 10



TPA-induced skin lesions involve IL-17F-producing
cells, but our negative results for the range of other in-
vestigated inflammatory cytokines in the ear lysates sug-
gest that important differences exist between the
immuno-inflammatory mechanisms in human psoriasis
compared to the TPA model.
To assess whether the TPA-induced cutaneous lesions

affected the mice systemically, we measured plasma
levels of SAA and selected cytokines. SAA is a circulat-
ing acute phase protein in humans and in mice (where
expression of C-reactive protein [CRP] is negligible) and
hepatic SAA production is stimulated by IL-1, IL-6, and
TNFα [27]. Plasma levels of SAA and CRP have been re-
ported to be up-regulated in psoriasis patients [28, 29].
In our study, plasma levels of SAA were significantly
higher in ApoE−/− mice with TPA-induced skin inflam-
mation as compared to vehicle-treated mice. None of
the other investigated cytokines were increased in
plasma, and most were below detection limit of our as-
says. These findings indicate that topical application of
TPA induced a relatively low-grade systemic inflamma-
tion which may be comparable to the relatively modest
increases of circulating levels of inflammatory markers
that have been found in patients with psoriasis [30].
Flow cytometric analyses of the spleen revealed that top-
ical application of TPA increased the number of CD11b+

cells and also caused more subtle changes with ex-
panded populations of effector (CD44+CD62L−) CD4+

T-cells and memory (CD44+CD62L+) CD4+ and CD8+

T-cells, together with a relative increase in Tc1-cells and
Tregs. Interestingly, hyper-activated effector T-cells and
a considerable number of Tregs are present in psoriatic
skin lesions, where the ability of Tregs to suppress
inflammation may be diminished by mechanisms
dependent on IL-6, but the relevance of our findings to
these abnormalities in patients with psoriasis are unclear
at present [31, 32]. Notwithstanding, the immunomodu-
latory effects on spleen cell populations after TPA appli-
cation in the present study did not lead to increased
atherosclerosis and it is possible that the strength and
specificity of these effects were insufficient to affect
atherogenesis in this model.
Only very few studies have been published that exam-

ined mechanisms by which psoriatic skin lesions may in-
fluence vascular biology. The KCTie2 doxycycline-
repressible murine model of psoriasis with transgenic
expression in keratinocytes of the angiopoietin receptor
Tie2 was reported to develop systemic inflammation and
aortic root vasculitis in one third of the mice at
12 months of age and these mice had shortened time to
occlusive thrombus formation in a model of photochem-
ical carotid artery thrombosis [16]. Very recently, results
from a K14-IL-17Aind/+ mouse model with keratinocyte
overexpression of IL-17A were published and these

animals developed very severe psoriasis-like skin lesions
and displayed increased vascular oxidative stress, endo-
thelial dysfunction, hypertension, left ventricle hyper-
trophy, and markedly reduced survival as compared to
controls [15]. In both studies, the psoriatic skin inflam-
mation therefore significantly affected the vascular sys-
tem, but it was not possible to assess the effect of skin
inflammation on atherogenesis since these mouse
models were normocholesterolaemic and thus resistant
to development of atherosclerosis. In our study, we
used the hypercholesterolaemic atherosclerosis-prone
ApoE−/− mouse, and atherosclerosis was measured
both in the aorta en face and in aortic root cross sec-
tions. We found no evidence that the TPA-induced
skin inflammation and systemic inflammatory changes
significantly influenced atherosclerotic plaque size,
plaque composition or aortic arch mRNA levels of in-
flammatory mediators. Of note, similar results have
previously been obtained in ApoE−/− mice with
chronic dermatitis induced by croton-oil, the com-
pound from which TPA was originally isolated. How-
ever, in that study, mice were challenged only once
per 4 weeks, with 8 applications in total, there was
no evidence of sustained systemic inflammation, and
atherosclerosis was assessed exclusively by aortic en
face lesion area [33]. Our results add considerably to
these earlier data by showing that although experi-
mental induction of psoriasis-like skin lesions led to
systemic inflammation, atherosclerosis in the ApoE−/−

model was not significantly affected. This finding
should be interpreted in light of the limitations of
our study, e.g., the inflammatory status of the ApoE−/−

model may represent an overwhelming stimulus that ab-
rogates the influence of skin lesions, the immuno-
stimulatory effects of TPA are unlikely to reproduce all
abnormalities found in psoriasis, and the relatively small
area of psoriasis-like skin lesions in the model, where the
ears measure approximately 1 cm2 on each side thus
representing about 6 % of total mouse body surface area
[34]. Indeed, a maximum severity psoriasis lesion with 6 %
of total body area involvement corresponds to a Psoriasis
Area Severity Index (PASI, the most widely used tool to
clinically assess psoriasis severity) of 5, compatible with
mild-to-moderate disease [35]. On the other hand, we
found that these skin lesions elicited unequivocal signs of
increased systemic inflammation and it is notable that
even mild psoriasis has been associated with increased risk
of myocardial infarction and stroke [2, 3]. If TPA had also
been applied to the back skin, the systemic inflammatory
response might have been stronger. However, we decided
against this procedure, since the ApoE−/− mouse is on a
C57Bl6/j background and has patches on the back skin,
where the cycle of hair follicles is not synchronized after
the age of approximately 10 weeks. When analysing effects
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of TPA application over 8 weeks hereafter, this ‘patching’
makes is impossible to compare skin lesions on the same
anatomical site in different mice. Also, topical application
of imiquimod has been suggested to be a more representa-
tive model of psoriasis [25]. However, all animal models of
psoriasis carry inherent limitations and although keratino-
cyte signal transduction after stimulation with TPA or
imiquimod shows similarities, e.g., with involvement
of nuclear factor kappa B (NF-kB) and signal trans-
ducer and activator of transcription 3 (STAT3) path-
ways, important differences between imiquimod-
induced skin inflammation and psoriatic plaques were
recently demonstrated [36, 37].

Conclusions
In summary, we have investigated a new mouse model
that potentially allows for long-term studies of effects of
psoriasis-like skin lesions in hypercholesterolaemic mice.
Our data suggest that in ApoE−/− mice, TPA-induced
psoriasis-like skin lesions lead to both local and systemic
inflammation, but despite these effects, we found no
alteration in atherosclerotic plaque development. Thus,
additional animal models are needed to examine the
hypothesis that psoriasis can promote cardiovascular
disease.
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