In this study we have identified the inciting allergen according to patch tests in 109 children with ACD. Contact dermatitis in children has been studied less extensively than adults in the existing literature [10, 11].
In the current study, overall 48.6 % of patients had one or more positive patch test results. The positive response rate to patch test allergens ranges from 15 to 62.3 % in different studies [5, 12, 13].
Nickel was the most common allergen in our study, a common finding with most previous reports [10, 14, 15]. Although some authors have reported the rate of false-positive and irritant reactions to nickel is higher among children [16], other studies suggest that this high rate might be due to use of adult concentration of allergen for patch testing [17], and the recent series do not confirm this [6]. We could not demonstrate clinical relevance in about half of the cases in our study. In our series nickel sulfate, cobalt chloride, methylisothiazolinone, colophony, potassium dichromate, paraben mix, 4-tert-butylphenon, fragrance mix, thiuram mix, mercapto mix, phenylendiamine base, and formaldehyde were the most common allergens in decreasing order of frequency.
The most commonly reported allergens in a study in Singapore were Nickel (40 %), Thimerosal (15 %), Colophony (9 %), Lanolin (8 %), Cobalt (8 %), Fragrance mix (5 %), and Neomycin (4 %) [18]. While in another study in Turkey, the most commonly documented inciting allergens were Nickel sulfate (46 %), Cobalt chloride (9.5 %), p-Phenylenediamine (9.5 %), Neomycin sulfate 20 % (7 %), Formaldehyde 1 % (4.6 %), Fragrance mix 8 % (3.9 %), CL-methylisothiazolinone 0.01 % (3.1 %), Mercapto mix 2 % (3.1 %), Quaternium 15 % (2.3 %), Benzocaine 5 % (2.3 %), and Potassium dichromate 0.5 % (1.5 %) [19]. In a recent review of five pediatric patch test studies to, the top ten allergens were neomycin, balsam of Peru, fragrance mix, lanolin, cocamidopropylbetaine, formaldehyde, corticosteroids, methylchlorisothiazolinone/methylisothiazolinone, propylene glycol, and benzalkonium chloride [6]. The observed differences in the frequency of the allergens responsible for induction of ACD between the present study and other studies may be explained by a variety of reasons. First and foremost, the prevalence of sensitivity to an individual allergen depends not only on the intrinsic allergenicity of the compound but also on the level of allergen exposure to the population, which may vary from country to country [20–23]. Another important issue is that investigators often employ a variety of test panels and allergen concentrations in different studies, therefore rendering comparisons difficult [23]. There are disagreements as to whether there is seasonal and temporal variation in reactivity to allergens [24]. Moreover, reactivity to some allergens may be influenced by ethnic factors [25].
Gender differences in rates of reactions to a variety of contact allergens have been previously reported [2, 5]. In our study females were significantly more likely to have positive tests. This finding is consistent with previously published studies [5, 12, 15]. Nevertheless, in one study no difference between sex and reactivity to the applied allergens was observed [26].
In the current study, nickel sensitivity was also found to be more frequent in females; however, without statistical significance (Table 4). Ear piercing has been considered as the most common cause of nickel sensitization and the reason for its higher rate in females, with the risk of nickel allergy rising with the number of piercings [12]. Piercing is a common tradition in Iran and is usually performed in girls early in life often followed by long term wearing of golden earing to keep the hole open. Low-carat gold may contain nickel [19] In contrast to studies reporting more potassium dichromate reactivity in adult males, we found no male predominance for this allergen [27, 28].
As previously reported, co-reactivity between cobalt and nickel allergy was observed in our study [2, 18]. We found that in 45.5 % of patients with positive cobalt responses nickel reactivity was also present, while 23.8 % of patients with positive patch tests to nickel also had positive reaction to cobalt. In agreement with our results, Rystedt reported that nickel sensitivity predisposed the patients to cobalt sensitivity [29].
Our results showed that older children tend to show more positive reactions to allergens. This finding is in concordance with a pervious study that showed the rate of patch test positivity was higher in older age groups [12]. Moreover, it should be taken into account that contact dermatitis increases with age and is more common in older individuals [30]. However, according to some researchers an age-dependent decrease in delayed type hypersensitivity may occur with age [30].
In the present study 44.0 % of patients had a personal history of atopy. The relationship between atopy and ACD remains controversial [31, 32]. Although it has been assumed that atopy could be a predisposing factor for the development of ACD, and more reactivity to specific allergens have been reported in atopic patient [33–35]; we found no significant association between personal or family history of atopy and patch test results. In concordance with our findings, some studies indicate that there is a similar prevalence of ACD in individuals with and without atopic diathesis [31, 36]. Hands were the most frequent sites of ACD in our study. Metal preservative and rubber are the most common causes for ACD of this region [11]. Also, in our study metal was the most common causative allergens of ACD.
In the present study, the face was the second most frequent ACD anatomic site. In some studies, the face was the most common site of ACD in children and adolescents [11].
Positive clinical relevance of the positive reactions was considered if the patient described a current or past cutaneous exposure to a product known to contain the allergen to which the patient reacted [7]. For some allergens in the pediatric patient group evaluation of relevance was not possible due to unknown history of exposure.
Methylisothiazolinone is a common preservative found in many cosmetic and toiletry products marketed to both children and adults. It is increasingly known to cause ACD, especially in perioral and perineal regions due to facial or baby wipes [37]. Colophony is a cause of ACD to adhesives and tapes. However, the clinical relevance of a positive patch-test reaction to colophony is often difficult to evaluate [38].
Our study is limited by small sample size, also we were unable to evaluate the relevance for positive patch test for all antigens. Studies with greater sample size and with adequate antigen relevance determination is recommended in Iranian children with ACD.